Sunday, March 15, 2020

Genetic link between Autism and Alzheimer’s Disease.



1         AUTISM:

1.1.         Introduction:

Autism is a developmental disorder characterized by difficulties with social interaction and communication, and by restricted and repetitive behavior. Parents often notice signs during the first three years of their child's life. These signs often develop gradually, though some children with autism experience worsening in their communication and social skills after reaching developmental milestones at a normal pace.
Autism is associated with a combination of genetic and environmental factors. Risk factors during pregnancy include certain infections, such as rubella, toxins including valproic acid, alcohol, cocainepesticideslead, and air pollutionfetal growth restriction, and autoimmune diseases. Controversies surround other proposed environmental causes; for example, the vaccine hypothesis, which has been disproven. Autism affects information processing in the brain and how nerve cells and their synapses connect and organize; how this occurs is not well understood. The Diagnostic and Statistical Manual of Mental Disorders (DSM-5), combines autism and less severe forms of the condition, including Asperger syndrome and pervasive developmental disorder not otherwise specified (PDD-NOS) into the diagnosis of autism spectrum disorder (ASD).

1.2.      CAUSE:
It has long been presumed that there is a common cause at the genetic, cognitive, and neural levels for autism's characteristic triad of symptoms. However, there is increasing suspicion that autism is instead a complex disorder whose core aspects have distinct causes that often co-occur. Three diagrams of chromosome pairs A, B that are nearly identical. 1: B is missing a segment of A. 2: B has two adjacent copies of a segment of A. 3: B's copy of A's segment is in reverse order.

Deletion
(1) duplication
(2) and inversion
(3) are all chromosome abnormalities that have been implicated in autism.
Autism has a strong genetic basis, although the genetics of autism are complex and it is unclear whether ASD is explained more by rare mutations with major effects, or by rare multigene interactions of common genetic variants. Complexity arises due to interactions among multiple genes, the environment, and epigenetic factors which do not change DNA sequencing but are heritable and influence gene expression. Many genes have been associated with autism through sequencing the genomes of affected individuals and their parents. Studies of twins suggest that heritability is 0.7 for autism and as high as 0.9 for ASD, and siblings of those with autism are about 25 times more likely to be autistic than the general population. However, most of the mutations that increase autism risk have not been identified.
Typically, autism cannot be traced to a Mendelian (single-gene) mutation or to a single chromosome abnormality, and none of the genetic syndromes associated with ASDs have been shown to selectively cause ASD. Numerous candidate genes have been located, with only small effects attributable to any particular gene. Most loci individually explain less than 1% of cases of autism. The large number of autistic individuals with unaffected family members may result from spontaneous structural variation — such as deletionsduplications or inversions in genetic material during meiosis. Hence, a substantial fraction of autism cases may be traceable to genetic causes that are highly heritable but not inherited: that is, the mutation that causes the autism is not present in the parental genome. Autism may be underdiagnosed in women and girls due to an assumption that it is primarily a male condition, but genetic phenomena such as imprinting and X linkage have the ability to raise the frequency and severity of conditions in males, and theories have been put forward for a genetic reason why males are diagnosed more often, such as the imprinted brain theory and the extreme male brain theory.
Maternal nutrition and inflammation during preconception and pregnancy influences fetal neurodevelopment. Intrauterine growth restriction is associated with ASD, in both term and preterm infants.  Maternal inflammatory and autoimmune diseases may damage fetal tissues, aggravating a genetic problem or damaging the nervous system.
Exposure to air pollution during pregnancy, especially heavy metals and particulates, may increase the risk of autism. Environmental factors that have been claimed without evidence to contribute to or exacerbate autism include certainfoods, infectious diseasessolventsPCBsphthalates and phenols used in plastic products, pesticidesbrominated flame retardantsalcohol, smoking, illicit drugsvaccines, and prenatal stress. Some, such as the MMR vaccine, have been completely disproven.
Parents may first become aware of autistic symptoms in their child around the time of a routine vaccination. This has led to unsupported theories blaming vaccine "overload", a vaccine preservative, or the MMR vaccine for causing autism. The latter theory was supported by a litigation-funded study that has since been shown to have been "an elaborate fraud". Although these theories lack convincing scientific evidence and are biologically implausible, parental concern about a potential vaccine link with autism has led to lower rates of childhood immunizationsoutbreaks of previously controlled childhood diseases in some countries, and the preventable deaths of several children.

1.3.         Classification:

Autism is one of the five pervasive developmental disorders (PDD), which are characterized by widespread abnormalities of social interactions and communication, and severely restricted interests and highly repetitive behavior. These symptoms do not imply sickness, fragility, or emotional disturbance.
Of the five PDD forms, Asperger syndrome is closest to autism in signs and likely causes; Rett syndrome and childhood disintegrative disorder share several signs with autism, but may have unrelated causes; PDD not otherwise specified (PDD-NOS; also called atypical autism) is diagnosed when the criteria are not met for a more specific disorder. Unlike with autism, people with Asperger syndrome have no substantial delay in language development. The terminology of autism can be bewildering, with autism, Asperger syndrome and PDD-NOS often called the autism spectrum disorders (ASD) or sometimes the autistic disorders, whereas autism itself is often called autistic disorderchildhood autism, or infantile autism. In this article, autism refers to the classic autistic disorder; in clinical practice, though, autismASD, and PDD are often used interchangeably. ASD, in turn, is a subset of the broader autism phenotype, which describes individuals who may not have ASD but do have autistic-like traits, such as avoiding eye contact.
Autism can also be divided into syndromal and non-syndromal autism; the syndromal autism is associated with severe or profound intellectual disability or a congenital syndrome with physical symptoms, such as tuberous sclerosis. Although individuals with Asperger syndrome tend to perform better cognitively than those with autism, the extent of the overlap between Asperger syndrome, HFA, and non-syndromal autism is unclear.
Some studies have reported diagnoses of autism in children due to a loss of language or social skills, as opposed to a failure to make progress, typically from 15 to 30 months of age. The validity of this distinction remains controversial; it is possible that regressive autism is a specific subtype, or that there is a continuum of behaviors between autism with and without regression.
Research into causes has been hampered by the inability to identify biologically meaningful subgroups within the autistic population and by the traditional boundaries between the disciplines of psychiatrypsychologyneurology and pediatrics. Newer technologies such as fMRI and diffusion tensor imaging can help identify biologically relevant phenotypes (observable traits) that can be viewed on brain scans, to help further neurogenetic studies of autism; one example is lowered activity in the fusiform face area of the brain, which is associated with impaired perception of people versus objects. It has been proposed to classify autism using genetics as well as behavior.

Spectrum

Autism has long been thought to cover a wide spectrum, ranging from individuals with severe impairments—who may be silent, developmentally disabled, and prone to frequent repetitive behavior such as hand flapping and rocking—to high functioning individuals who may have active but distinctly odd social approaches, narrowly focused interests, and verbose, pedantic communication. Because the behavior spectrum is continuous, boundaries between diagnostic categories are necessarily somewhat arbitrary.[52] Sometimes the syndrome is divided into low-, medium- or high-functioning autism (LFA, MFA, and HFA), based on IQ thresholds. Some people have called for an end to the terms "high-functioning" and "low-functioning" due to lack of nuance and the potential for a person's needs or abilities to be overlooked.


2.      Alzheimer's disease:

2.1.         Introduction :
Alzheimer's disease (AD), also referred to simply as Alzheimer's, is a chronic neurodegenerative disease that usually starts slowly and gradually worsens over time. It is the cause of 60–70% of cases of dementia The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems with languagedisorientation (including easily getting lost), mood swings, loss of motivation, not managing self-care, and behavioural issues. As a person's condition declines, they often withdraw from family and society. Gradually, bodily functions are lost, ultimately leading to death. Although the speed of progression can vary, the typical life expectancy following diagnosis is three to nine years.
The cause of Alzheimer's disease is poorly understood. About 70% of the risk is believed to be inherited from a person's parents with many genes usually involved. Other risk factors include a history of head injuriesdepression, and hypertension. The disease process is associated with plaques and neurofibrillary tangles in the brain. A probable diagnosis is based on the history of the illness and cognitive testing with medical imaging and blood tests to rule out other possible causes. Initial symptoms are often mistaken for normal ageing. Examination of brain tissue is needed for a definite diagnosis. Mental and physical exercise, and avoiding obesity may decrease the risk of AD; however, evidence to support these recommendations is weak. There are no medications or supplements that have been shown to decrease risk.
2.2.         Causes:
The cause for most Alzheimer's cases is still mostly unknown except for 1% to 5% of cases where genetic differences have been identified. Several competing hypotheses exist trying to explain the cause of the disease.
2.2.1.  Genetic :
The genetic heritability of Alzheimer's disease (and memory components thereof), based on reviews of twin and family studies, ranges from 49% to 79%. Around 0.1% of the cases are familial forms of autosomal (not sex-linkeddominant inheritance, which have an onset before age 65. This form of the disease is known as early onset familial Alzheimer's disease. Most of autosomal dominant familial AD can be attributed to mutations in one of three genes: those encoding amyloid precursor protein (APP) and presenilins 1 and 2. Most mutations in the APP and presenilin genes increase the production of a small protein called Aβ42, which is the main component of senile plaques. Some of the mutations merely alter the ratio between Aβ42 and the other major forms—particularly Aβ40—without increasing Aβ42 levels. Two other genes associated with autosomal dominant Alzheimer's disease are ABCA7 and SORL1.
Most cases of Alzheimer's disease do not exhibit autosomal-dominant inheritance and are termed sporadic AD, in which environmental and genetic differences may act as risk factors. The best known genetic risk factor is the inheritance of the ε4 allele of the apolipoprotein E (APOE). Between 40 and 80% of people with AD possess at least one APOEε4 allele. The APOEε4 allele increases the risk of the disease by three times in heterozygotes and by 15 times in homozygotes. Like many human diseases, environmental effects and genetic modifiers result in incomplete penetrance. For example, certain Nigerian populations do not show the relationship between dose of APOEε4 and incidence or age-of-onset for Alzheimer's disease seen in other human populations. Early attempts to screen up to 400 candidate genes for association with late-onset sporadic AD (LOAD) resulted in a low yield. More recent genome-wide association studies (GWAS) have found 19 areas in genes that appear to affect the risk.
These genes include: 
Alleles in the TREM2 gene have been associated with a 3 to 5 times higher risk of developing Alzheimer's disease. A suggested mechanism of action is that in some variants in TREM2 white blood cells in the brain are no longer able to control the amount of beta amyloid present. Many SNPs are associated with Alzheimer's with a 2018 study adding 30 SNPs by differentiating AD into 6 categories, including memory, language, visuospatial, and executive functioning.

2.2.2.  Cholinergic hypothesis:

The oldest hypothesis, on which most currently available drug therapies are based, is the cholinergic hypothesis, which proposes that AD is caused by reduced synthesis of the neurotransmitter acetylcholine. The cholinergic hypothesis has not maintained widespread support, largely because medications intended to treat acetylcholine deficiency have not been very effective.

2.2.3.  Amyloid hypothesis:

In 1991, the amyloid hypothesis postulated that extracellular amyloid beta (Aβ) deposits are the fundamental cause of the disease. Support for this postulate comes from the location of the gene for the amyloid precursor protein (APP) on chromosome 21, together with the fact that people with trisomy 21 (Down Syndrome) who have an extra gene copy almost universally exhibit at least the earliest symptoms of AD by 40 years of age. Also, a specific isoform of apolipoprotein, APOE4, is a major genetic risk factor for AD. While apolipoproteins enhance the breakdown of beta amyloid, some isoforms are not very effective at this task (such as APOE4), leading to excess amyloid buildup in the brain. Further evidence comes from the finding that transgenic mice that express a mutant form of the human APP gene develop fibrillar amyloid plaques and Alzheimer's-like brain pathology with spatial learning deficits.
An experimental vaccine was found to clear the amyloid plaques in early human trials, but it did not have any significant effect on dementia. Researchers have been led to suspect non-plaque Aβ oligomers (aggregates of many monomers) as the primary pathogenic form of Aβ. These toxic oligomers, also referred to as amyloid-derived diffusible ligands (ADDLs), bind to a surface receptor on neurons and change the structure of the synapse, thereby disrupting neuronal communication. One receptor for Aβ oligomers may be the prion protein, the same protein that has been linked to mad cow disease and the related human condition, Creutzfeldt–Jakob disease, thus potentially linking the underlying mechanism of these neurodegenerative disorders with that of Alzheimer's disease.
In 2009, this hypothesis was updated, suggesting that a close relative of the beta-amyloid protein, and not necessarily the beta-amyloid itself, may be a major culprit in the disease. The hypothesis holds that an amyloid-related mechanism that prunes neuronal connections in the brain in the fast-growth phase of early life may be triggered by ageing-related processes in later life to cause the neuronal withering of Alzheimer's disease. N-APP, a fragment of APP from the peptide's N-terminus, is adjacent to beta-amyloid and is cleaved from APP by one of the same enzymes. N-APP triggers the self-destruct pathway by binding to a neuronal receptor called death receptor 6 (DR6, also known as TNFRSF21). DR6 is highly expressed in the human brain regions most affected by Alzheimer's, so it is possible that the N-APP/DR6 pathway might be hijacked in the ageing brain to cause damage. In this model, beta-amyloid plays a complementary role, by depressing synaptic function.

2.2.4.  Osaka mutation:

A Japanese pedigree of familial Alzheimer's disease was found to be associated with a deletion mutation of codon 693 of APP. This mutation and its association with Alzheimer's disease was first reported in 2008. This mutation is known as the Osaka mutation. Only homozygotes with this mutation develop Alzheimer's disease. This mutation accelerates Aβ oligomerization but the proteins do not form amyloid fibrils suggesting that it is the Aβ oligomerization rather than the fibrils that may be the cause of this disease. Mice expressing this mutation have all usual pathologies of Alzheimer's disease.

2.2.5.  Tau hypothesis:



In Alzheimer's disease, changes in tau protein lead to the disintegration of microtubules in brain cells.
The tau hypothesis proposes that tau protein abnormalities initiate the disease cascade. In this model, hyperphosphorylated tau begins to pair with other threads of tau. Eventually, they form neurofibrillary tangles inside nerve cell bodies. When this occurs, the microtubules disintegrate, destroying the structure of the cell's cytoskeleton which collapses the neuron's transport system. This may result first in malfunctions in biochemical communication between neurons and later in the death of the cells.

2.3.         Types:
Nearly everyone with Alzheimer’s disease will eventually have the same symptoms -- memory loss, confusion, trouble with once-familiar tasks, and making decisions. Though the effects of the disease are similar, there are two main types.

2.3.1.  Early-onset Alzheimer's:

This type happens to people who are younger than age 65. Often, they’re in their 40s or 50s when they’re diagnosed with the disease. It’s rare -- up to 5% of all people with Alzheimer's have early-onset. People with Down syndrome have a higher risk for it.

Scientists have found a few ways in which early-onset Alzheimer’s is different from other types of the disease. People who have it tend to have more of the brain changes that are linked with Alzheimer’s. The early-onset form also appears to be linked with a defect in a specific part of a person’s DNA: chromosome 14. A form of muscle twitching and spasm, called myoclonus, is also more common in early-onset Alzheimer's.

2.3.2.  Late-onset Alzheimer's:
This is the most common form of the disease, which happens to people age 65 and older. It may or may not run in families. So far, researchers haven’t found a particular gene that causes it. No one knows for sure why some people get it and others don’t.


3.        Relation between autism and alzheimer’s disease:
Autism spectrum disorder (ASD) and Alzheimer's disease (AD) are neurodevelopmental and neurodegenerative disorders respectively, with devastating effects not only on the individual but also the society. Collectively, a number of factors contribute to the expression of ASD and AD. It is of utmost curiosity that these disorders express at different stages of life and there is an involvement of certain susceptible genes. This genetic basis makes the background of common associations like memory deficits, cognition changes, demyelination, oxidative stress and inflammation, an integral part of both disorders. Modern technology resulting in genetically modified crops and increase in gadgets emitting electromagnetic frequencies have resulted in enhanced risks for neurological dysfunctions and disorders like ASD and AD. Subsequent advances in the psychological, pharmacological, biochemical and nutritional aspects of the disorders have resulted in the development of newer therapeutic approaches. The common clinical features like language impairment, executive functions, and motor problems have been discussed along with the patho-physiological changes, role of DNA methylation, myelin development, and heavy metals in the expression of these disorders. Psychopharmacological and nutritional approaches towards the reduction and management of risk factors have gained attention from the researchers in recent years. Current major therapies either target the inflammatory pathways or reduce cellular oxidative stress. This contribution focuses on the commonalities of the two disorders.

4.        Genetic link between Autism and Alzheimer’s Disease:
A gene called ADNP could be responsible for causing higher levels of autism in boys — who suffer from the condition far more than girls do — as well as the increased levels of Alzheimer’s disease in elderly women.
If we understand how ADNP, an activity-related neuroprotective protein, which is a major regulatory gene, acts differently in males and females, we can try to optimize drugs for potential future therapeutics to treat both autism and Alzheimer’s disease.
ADNP, or activity-dependent neuroprotective protein, is actually used as the name for the gene that encodes a protein called activity-dependent neuroprotector homeobox (the term “gene” and “protein” are generally applied interchangeably to ADNP in scientific literature). In studies over the past 15 years, scientists, have found that ADNP mutations can cause not only autism, but also Alzheimer’s.
The team of scientists discovered how loss of NAP, a snippet of ADNP essential for brain formation, exposes cells to physical damage that eventually destroys them, triggering dementia-related diseases like Alzheimer’s. However, applying proteins with NAP-like properties to cells makes them healthy again — opening the door to possible treatments for Alzheimer’s and other degenerative diseases.
The study, published in the Journal of Translational Psychiatry, sheds even more light on how ADNP affects Alzheimer’s patients — and provides insights into how the gene could affect males and females differently. In the study, scientists examined the behavioral response of male and female mice — both ADNP-altered and normal — to different cognitive challenges and social situations. To do so, they removed one copy of the ADNP gene from some mice, and then examined their respective responses to unfamiliar objects, odors, and other mice.
Their results revealed sex-specific learning and memory differences in the mice. In the younger male mice, the lack of ADNP caused deficiencies in object recognition and social memory, typical of autistic behavior. However, for older females, the removal of the gene caused them to withdraw and become more socially deficient, a hallmark of dementia-related diseases, especially Alzheimer’s. According to the study, “given the sex and genotype differences in ADNP positive or negative mice, we were interested to see if ADNP expression is sex-dependent in the hippocampus, a brain area directly associated with learning and memory.”
The results showed, for the first time, that there was a gender-related — and age-related — difference in the effect of ADNP on mouse behavior. The next step, of course, is to expand the study and extend it to human clinical trials.
“This study emphasizes the need to analyze men and women separately in clinical trials to find cures for diseases, because they may respond differently,” scientists explained.
ADNP is gender-dependent expression changes male and female chemical tendencies toward different neurological disorders. Male and female mice may look the same and their brains may look the same, but they are not. When the expression of ADNP is different, it may cause different behaviors and different cognitive abilities.”
Further work is needed, added the professor, but the team’s research could one day turn into a treatment to alleviate, or even reverse, Alzheimer’s disease, as well as autism.
References :






https://books.google.co.in/books?id=3QSNBAAAQBAJ&pg=PT154&lpg=PT154&dq=difference+of+autism+and+alzheimer%27s+wikipedia&source=bl&ots=AjWVGaTexq&sig=ACfU3U0y2ccBZ0WHSWdVg87mtq6zzjZfFw&hl=en&sa=X&ved=2ahUKEwj-kv3VlZzoAhWy8HMBHQauD6cQ6AEwFHoECBQQAQ#v=onepage&q=difference%20of%20autism%20and%20alzheimer's%20wikipedia&f=false




No comments:

Post a Comment

featured post

Are we safe with so many more covid variants!

Viruses are continually changing and mutating itself. Every time a virus replicates (makes copies of itself), it has the capacity to modify ...